การเคลื่อนที่ของสิ่งมีชีวิต

การเคลื่อนที่...เป็นกิจกรรมอย่างหนึ่งของสิ่งมีชีวิต...สิ่งมีชีวิตมีโครงสร้างแตกต่างกันจึงมีรูปแบบการเคลื่อนที่ต่างกัน

1. สิ่งมีชีวิตเซลล์เดียว อาศัย Cytoskeleton
2. สิ่งมีชีวิตหลายเซลล์ อาศัยระบบกล้ามเนื้อในการเคลื่อนที่
ประเภทโครงร่างค้ำจุนของสิ่งมีชีวิต

1. Hydrostatic skeleton

2. Exoskeleton

3. Endoskeleton
1. **Hydrostatic skeleton**: ระบบโครงร่างที่อ่อนนุ่ม (Hydric = น้ำ Static = Skeleton = โครงร่างแข็ง)

ร่างกายมีลักษณะเป็น เนื้ออ่อนนุ่ม ลักษณะสุ่มไม่สม่ำเสมอในร่างกาย และร่างกายไม่มีเปลือกหูม แต่อาจมีเมือกปกคลุมร่างกาย

พบใน cnidaria หนอนตัวกลม หนอนตัวแบน annelid
2 Exoskeleton : ระบบโครงร่างที่แข็งภายนอก
(Exo = ภายนอก Skeleton = โครงร่างแข็ง)
โครงร่างแข็งภายนอกร่างกายของสัตว์อาจเป็นสารพวกไคดิน
หรือ ตินปู ซึ่งเกิดจากการคัดหลั่งสารออกมามาปกคลุมตัว หรือ
cัดหลั่งสารออกมามาทำปฏิกิริยาภายนอกจนเกิดโครงร่างแข็ง
สั้งซึ่งหักบินาวรัด Turbinella pyrum (Sinistral) หักบินาวรัด = เทียนขาว
3 Endoskeleton : ระบบโครงร่างที่แข็งภายใน
(Endo = ภายใน Skeleton = โครงร่างแข็ง)
สัดวิที่มีแกนหลักอยู่ภายในร่างกาย ซึ่งแกนนั้นอาจเป็นของแข็งเช่น กระดูกแข็ง (Bone) กระดูกอ่อน (Cartilage) หรืออาจเป็นเพียงเนื้อเยื่ออ่อนนุ่มอย่าง Notochord ก็ได้
Cytoskeletons

Cyto = เซลล์ Skeleton = กระดูก

Microfilaments
(actin filaments)
Micro = จุล Filament = เส้นใย

Intermediate filaments

Microtubules
Tubules = ท่อเล็ก ๆ
 çalıştır

CYTOSKELETON:
- Microfilaments
- Intermediate filaments
- Microtubules
1. สิ่งมีชีวิตเซลล์เดียว

อะมีบ้า การสร้างเท้าเทียม
ยูกลีนา แพร่เจลลิม
พารามีเชียม ซีเดีย
การไหลของ cytoplasm

เกิดใน พวกอะมีบ้า แบ่งไซโทพลาสึ่มเป็น 2 ส่วนคือ
1. ส่วนนอกเรียกว่า ectoplasm เป็นเจลกึ่งแข็ง (gel) เครื่องมือไม่ค่อยได้
2. ส่วนในเรียกว่า endoplasm เป็นของเหลว (sol) ไหลไปมาได้

การเคลื่อนที่เกิดจากการเปลี่ยนแปลงของไซโทพลาสึม จาก gel เป็น sol
และ จาก sol เป็น gel ดันน้ำเชื้อเจลให้ยืดออกมาก จากการส่งกำลังของไมโครฟิลามร์
ทำให้เกิดเท้าเทียม (pseudopodium) Pseudo = เทียม, pod = ขา
Cortex (outer cytoplasm): gel with actin network

Inner cytoplasm: sol with actin subunits

Extending pseudopodium

(b) Amoeboid movement
การเคลื่อนที่โดยอาศัยซิลิย์หรือ ซิลิย์
(a) Motion of flagella

Direction of swimming

(b) Motion of cilia

Direction of organism’s movement

Power stroke Recovery stroke
1. ไมโครทิวบูล (microtubule)

- เป็นหลอดเส้นเล็กๆ ประกอบด้วย โปรตีนทิวบูลิน (Tubulin)
- โครงสร้างแบบ (9+2) คือ เรียงตัวเป็น 9 กลุ่ม กลุ่มละ 2 หลอด ตรงแกนกลาง มี 2 หลอด
- ระหว่างไมโครทิวบูล จะมีโปรตีน ไดนีน (dynein)

โครงสร้างภาพตัดขวางของ แฟลเจลลัมและซิลีเอีย
(b) Cross section of motile cilium

โครงสร้างของซิเลีย cilia

0.1 μm

Dynein arm

Outer microtubule doublet

Central microtubule

Radial spoke

Cross-linking proteins between outer doublets

Plasma membrane
2. เบซัลบอดี (basal body)/ไคนีโทโซม (kinetosome)

- เป็นส่วนที่อยู่ลึกลงไป เป็นฐานของซิเลียมและแฟลเจลลัม
- มีโครงสร้างเป็น 9+0 (เรียงตัวเป็น 9 กลุ่ม กลุ่มละ 3 หลอด)
- ถ้าตัดเอาเบซัลบอดีออก จะทำให้ซิเลียม หรือแฟลเจลล่าเคลื่อนที่ไม่ได้
(c) Cross section of basal body
2. สัตว์ทะเลที่ใช้น้ำช่วยในการขับเคลื่อน

แมงกะพรูง (jelly fish)

- เนื้อเยื่อขอบกระดิ่ง
- อาศัยแสงต้นน้ำ

การเคลื่อนที่อาศัยแพร่ดันน้ำที่พื้นออกاما
หมึก (squid)

เกิดจากการเหดดังของกล้ามเนื้อล่าตัว การเคลื่อนที่อาศัยแรงดันน้ำที่พื้นออกม้า การเหดดังของการเหดดังเนื้อร้องทำให้ไฟฟ้า

ช่วยในการทรงตัว

กรีบทาง

ทิศทางการเคลื่อนที่

ท่อไฟฟ้า

ทิศทางน้ำที่พ่นออก

ทิศทางน้ำที่พ่นออก
ดาวทะเล (sea star)

การเคลื่อนที่ของดาวทะเล

มีระบบการเคลื่อนที่ด้วยระบบท่อน้ำ (water - vascular system)
ซึ่งประกอบด้วย มวลรีโโพไลต์ (madrepolite) วงแหวน (ring canal) เรเดียลแคนแนล (radial canal) ทิวบัฟฟ์ (tube feet) และ แอมพูลา (ampulla)
Ampulla หด tube feet ยิน
3. สัตว์บนบก

ใช้เดือนดิน (Earthworm)

- มีกล้ามเนื้อ 2 ชุด คือ กล้ามเนื้อวง (circulatory system) และ กล้ามเนื้อตามยาว (Longitudinal muscle)

- กล้ามเนื้อวงและกล้ามเนื้อตามยาว หดตัวเป็นจังหวะเรียกว่า Peristalsis

- ใช้เดือย (setae or bristle) ช่วยในการเคลื่อนที่

การทำกายแบบ antagonism
ลักษณะการเคลื่อนที่ของไส้เดือนดิน

Longitudinal muscles contract, and segments catch up. Chaetae attach to the ground and prevent backsliding.

Circular muscles contract, and anterior end moves forward. Chaetae lose attachment to ground.

Circular muscles contract, and anterior end moves forward.
แมลง (insect)

Flexor = หด = งอ
Extensor = หด = เหยียด

แมลงมีโครงสร้างภายนอก (exoskeleton) การเคลื่อนไหวเกิดจากการทำงานสลับกันของ
--กล้ามเนื้อเฟล็กเซอร์ (flexor)
--เอกเทนเซอร์ (extensor)

การทำงานแบบแอนทิแกนิซึม (antagonism)

ปีกยก อกหด
<table>
<thead>
<tr>
<th></th>
<th>Human forearm (internal skeleton)</th>
<th>Grasshopper tibia (external skeleton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Biceps</td>
<td>Extensor muscle</td>
</tr>
<tr>
<td>-</td>
<td>Triceps</td>
<td>Flexor muscle</td>
</tr>
<tr>
<td>Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Biceps</td>
<td>Extensor muscle</td>
</tr>
<tr>
<td>-</td>
<td>Triceps</td>
<td>Flexor muscle</td>
</tr>
</tbody>
</table>

Key
- Blue: Contracting muscle
- Green: Relaxing muscle

© 2011 Pearson Education, Inc.
ปลา (Fish)
- การหดและคลายตัวของกล้ามเนื้อที่ยึดติดอยู่กับกระดูกสันหลัง
- การหดตัวแต่ละส่วนไม่เท่ากัน เริ่มจากหัวไปหาง
ทำให้ปลาเคลื่อนที่เป็นรูปตัว S
นก (Bird)

นกมีกล้ามเนื้อ 2 ชุด ยึดระหว่าง กระดูกโคนปีก humerus และกระดูกอก sternum

1. กล้ามเนื้อกดปีก
2. กล้ามเนื้อยกปีก

- กล้ามเนื้อยกปีกหนดตัว กล้ามเนื้อกดปีกกวาดตัว ทำให้ปีกยกขึ้น

การทำงานแบบ antagonism
นกมีโครงสร้างปีกและขนเป็นแบบ airfoil ตามหลักเบอร์นูลิ
• มีกระดูกกลวงทำให้เบา
• ระบบหายใจมีประสิทธิภาพ มีถุงลม air sac สำรองอากาศและ ระบายความร้อนได้ดี
เสือชีต้า (cheetah)

วิ่งได้เร็วสูงสุดถึง 110 km/hr
การเคลื่อนไหวของมนุษย์
ระบบโครงกระดูก

โครงกระดูกของคนที่เจริญเติบโตเต็มที่มีทั้งสิ้น 206 ชิ้น แบ่งออกเป็น

1. กระดูกแกน (axial skeleton)

2. กระดูกยางค์ (appendicular skeleton)
กระดูกแกนมีทั้งหมด 80 ชิ้น ประกอบด้วย

1. กะโหลกศีรษะ (skull)
2. กระดูกสันหลัง (vertebrae)
3. กระดูกหน้าอก (sternum)
4. กระดูกซี่โครง (ribs)
มีทั้งหมด 29 ชิ้น ภายใน มีลักษณะเป็นโพรง เป็นที่อยู่ของสมอง

หน้าที่ : ป้องกันไม่ให้สมองถูกระทอน กระแทกระเทือน
หน้าที่ : เป็นแกนกลางค้ำจุนร่างกาย

ระหว่างกระดูกสันหลังแต่ละข้อจะมีกระดูกย่อย (cartilage) ซึ่งเรียกว่า หมอนรองกระดูก (intervertebral disc) รองรับและเชื่อมกระดูกสันหลังแต่ละข้อ

หมอนรองกระดูก
คำถาม ??

ถ้าหมอนรองกระดูกเสื่อม จะเกิดผลอย่างไร?

ทำให้ไม่สามารถเอี้ยวตัว หรือบิดตัวได้ ซึ่งทำให้ร่างกายเคลื่อนไหวไม่สะดวก เกิดความเจ็บปวดระหว่างข้อต่อของกระดูกสันหลังในขณะเคลื่อนไหว
มีอยู่ 1 ชิ้น ตำแหน่งของกระดูกอยู่ด้านหน้า ยึดอยู่กับกระดูกซี่โครง

3. กระดูกหน้าอก (sternum)
มีทั้งหมด 12 คู่ เชื่อมต่อกับด้านข้างของกระดูกสันหลังและกระดูกอก

- คู่ที่ 1-7 กระดูกซี่โครงแท้ (true ribs)
- คู่ที่ 8-10 กระดูกซี่โครงไม่แท้ (false ribs)
- คู่ที่ 11-12 กระดูกซี่โครงลอย (floating ribs)
กระดูกยางค์ (appendicular skeleton)

คือ โครงกระดูกที่อยู่รอบนอกของกระดูกแกน มีทั้งหมด 126 ชิ้น ประกอบด้วย

1. กระดูกหัวไหล่ 4 ชิ้น
2. กระดูกแขน 60 ชิ้น
3. กระดูกเชิงกราน 2 ชิ้น
4. กระดูกขา 60 ชิ้น

รวม 126 ชิ้น
Types of joints
- Ball-and-socket joint
- Hinge joint
- Pivot joint

Shoulder girdle
- Clavicle
- Scapula

Sternum
Rib
Humerus
Vertebra
Radius
Ulna
Pelvic girdle
Carpals

Phalanges
Metacarpals
Femur
Patella
Tibia
Fibula
Tarsals
Metatarsals
Phalanges
บ้อต่อ (Joint)

คือ ตำแหน่งที่กระดูกแต่ละชิ้น เชื่อมต่อกัน แบ่งออกเป็น 3 ประเภท คือ

1. ข้อต่อที่เคลื่อนไหวไม่ได้ (immovable joint) : ข้อต่อของกะโหลกศีรษะ

2. ข้อต่อที่เคลื่อนไหวได้เล็กน้อย (movable joint)
 - ข้อต่อกระดูกซี่โครง
 - ข้อต่อกระดูกสันหลัง
 - ข้อต่อกระดูกเชิงกราน
3. ข้อต่อที่เคลื่อนไหวโอนได้มาก (synovial joint)

3.1 ข้อต่อแบบบานพับ (hinge joint) ข้อศอก

3.2 ข้อต่อแบบลูกกลมในเบ้ากระดูก (ball and socket joint) หัวไหล่

3.3 ข้อต่อแบบสไลด์ (gliding joint) ข้อต่อกระดูกข้อมือ ข้อต่อกระดูกส้นหลัง

3.4 ข้อต่อแบบฮันม้า (saddle joint) ข้อต่อของกระดูกนัมือถึงกับฝ่ามือ

3.5 ข้อต่อแบบเดือย (pivot joint) กระดูกด้านคอกับฐานของกระโหลกศีรษะ
บัวต่อ (Joint)

ลูกกลมในปั๊กกระดูก

แบบบานพับ

แบบสไลด์

หัวไหล่, กระดูกต้นขา, กระดูกเชิงกราน

ข้อศอก, เข่า, ระหว่างข้อมือ

ข้อต่อกระดูกข้อเท้า, กระดูกสันหลัง
ระหว่างกระดูกบริเวณข้อต่อ จะมีของเหลวที่เรียกว่า “น้ำไขข้อ (synovial fluid)” ทำให้กระดูกไม่เสียดสีกัน

เอ็นยึดข้อ (ligament)

เป็นเนืองยืดเกี่ยวพัน เหมียวยิด กระดูกให้เชื่อมติดกัน
ระบบกล้ามเนื้อ
(Muscular system)

1. กล้ามเนื้อโครงร่าง (Skeletal muscle)

2. กล้ามเนื้อหัวใจ (cardiac muscle)

2. กล้ามเนื้อเรียบ (smooth muscle)
กล้ามเนื้อโครงร่าง (Skeletal muscle)

ลักษณะ: เป็นกล้ามเนื้อที่เกาะติดกับโครงกระดูก มีลายแถบสีอ่อนและสีเข้มสลับกันセルเล็ปเป็นทรงกระบอก มีหลายนิวเคลียส

การควบคุมการทำงาน: อยู่ในอำนาจจิตใจ (Voluntary)

แหล่งที่พบ: กล้ามเนื้อแขน ขา ฯลฯ
Skeletal muscle
กล้ามเนื้อหัวใจ (cardiac muscle)

ลักษณะ : เป็นกล้ามเนื้อของหัวใจ เซลล์รูปร่างทรงกระบอก มีปลายปลาย เซลล์แตกแขนง

การควบคุมการทำงาน : อยู่นอกอำนาจจิตใจ (Involuntary)
กล้ามเนื้อหัวใจ (cardiac muscle)
กล้ามเนื้อเรียบ (smooth muscle)

ลักษณะ: เซลล์รูปร่างยาว หัวท้ายแหลม คล้ายกระสวย แต่ละเซลล์มีนิวเคลียส 1 อัน อยู่ตรงกลาง

การควบคุมการทำงาน: อยู่นอกอำนาจจิตใจ (Involuntary)

แหล่งที่พบ: อวัยวะภายใน
กล้ามเนื้อเรียบ (smooth muscle)
เปรียบเทียบกล้ามเนื้อทั้ง 3 ชนิด

(a) Skeletal muscle
- Nucleus
- Muscle fiber (cell)
- Striations

(b) Cardiac muscle
- Striations
- Muscle fiber
- Intercalated disk
- Nucleus

(c) Smooth muscle
- Muscle fiber
- Nucleus
<table>
<thead>
<tr>
<th>ลักษณะเปรียบเทียบ</th>
<th>กล้ามเนื้อโครงร่าง</th>
<th>กล้ามเนื้อหัวใจ</th>
<th>กล้ามเนื้อเรียบ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.รูปร่างลักษณะ</td>
<td>ทรงกระบอก</td>
<td>ทรงกระบอก</td>
<td>ยาวเรียว (กระสวย)</td>
</tr>
<tr>
<td>2. จำนวนนิวเคลียส</td>
<td>หลายนิวเคลียส</td>
<td>1-2 นิวเคลียส</td>
<td>1 นิวเคลียส</td>
</tr>
<tr>
<td>3. ตำแหน่งของนิวเคลียส</td>
<td>อยู่ชิดติดขอบเซลล์</td>
<td>กึ่งกลางเซลล์</td>
<td>กึ่งกลางเซลล์</td>
</tr>
<tr>
<td>4. การแสดงแบบ</td>
<td>ไม่มี</td>
<td>มี</td>
<td>ไม่มี</td>
</tr>
<tr>
<td>ของเซลล์</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. การควบคุมการทำงาน</td>
<td>ให้อานาจจิตใจ</td>
<td>นอกอำนาจจิตใจ</td>
<td>นอกอำนาจจิตใจ</td>
</tr>
<tr>
<td>6. ตำแหน่งที่อยู่</td>
<td>ยึดกับกระดูก</td>
<td>หัวใจ</td>
<td>อวัยวะภายใน</td>
</tr>
<tr>
<td>7. ความต้องการพลังงาน</td>
<td>มาก</td>
<td>มาที่สุด</td>
<td>น้อย</td>
</tr>
</tbody>
</table>
การทำงานของกล้ามเนื้อโครงร่าง
เอ็นร้อยหวาย

ยืดกล้ามเนื้อน่อง กับกระดูกส้นเท้า
คำถาม ??

1. เอนยืดข้อ กับเอ็นยืดกระดูก เหมือนหรือแตกต่างกันอย่างไร

เหมือนกัน : เป็นเนื้อเยื่อเกี่ยวพัน เหนียว แข็งแรง
ต่างกัน : เอนยืดข้อ จะยืดกระดูกให้เชื่อมต่อกัน เอนยืดกระดูก จะยืดระหว่างกล้ามเนื้อและกระดูก

2. ขณะที่ร่างกายเคลื่อนที่ การทำงานของกระดูก กล้ามเนื้อ และข้อต่อ มีความสัมพันธ์กันอย่างไร

ขณะที่ร่างกายเคลื่อนที่ กล้ามเนื้อโครงร่างที่ทำงานร่วมกันในสภาวะตรงข้ามจะหดหรือคลายตัว เพื่อควบคุมการเคลื่อนที่ของกระดูก ส่วนข้อต่อช่วยป้องกันทิศทางการเคลื่อนที่ของกระดูก
โครงสร้างและการทำงานของกล้ามเนื้อโครงร่าง

กล้ามเนื้อโครงร่าง แยกย่อยเป็น

เส้นใยกล้ามเนื้อ (muscle fiber)

เส้นใยกล้ามเนื้อเล็ก (myofibril)

ประกอบด้วย

ไมโครฟิลามันต์ (microfilament)

แยกย่อยเป็น

แอคทิน (actin)

ไมโอซีน (myosin)
การศึกษาการทำงานของเลื่อนในกล้ามเนื้อ

H.E. Huxley และ Jean Hanson

สมมติฐานการเลื่อนของฟิลาเมนต์ (Sliding filament hypothesis)

“ การหดตัวของกล้ามเนื้อ เกิดจากการเลื่อนของแอ็กทิน เข้าหากันตรงกลาง การเลื่อนของแอ็กทินดังกล่าวนี้จะทำให้เส้นใยกล้ามเนื้อหดตัว

ATP และ Ca$^{2+}$ ทำให้เส้นใยกล้ามเนื้อหดตัว”
Thick filaments (myosin)

Thin filaments (actin)

Z lines

Sarcomere

TEM

M line

Z line

Sarcomere

0.5 μm
(a) Myosin-binding sites blocked

(b) Myosin-binding sites exposed
(Sliding filament hypothesis)
1. Thin filament
 Myosin head (low-energy configuration)

2. Thick filament
 Myosin-binding sites
 Actin
 High-energy configuration

3. Cross-bridge
 ADP
 P_i
Thin filament moves toward center of sarcomere.

1. Thin filament
2. Thick filament
3. Actin
4. Myosin-binding sites
5. Low-energy configuration
6. High-energy configuration
7. Cross-bridge
8. ADP + P_i
9. ATP